\begin{tabbing} EKind\{i:l\} \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$E$:Type$_{\mbox{\scriptsize i}}$\+ \\[0ex]$\times$EqDecider($E$) \\[0ex]$\times$Top \\[0ex]$\times$${\it pred?}$:($E$$\rightarrow$($E$+Unit)) \\[0ex]$\times$${\it info}$:($E$$\rightarrow$(Id$\times$Id+(IdLnk$\times$$E$)$\times$Id)) \\[0ex]$\times$EO\=rderAxioms\{i\}($E$;\+ \\[0ex]${\it pred?}$; \\[0ex]${\it info}$) \-\\[0ex]$\times$$T$:(Id$\rightarrow$Id$\rightarrow$Type$_{\mbox{\scriptsize i}}$) \\[0ex]$\times$${\it when}$:($x$:Id$\rightarrow$$e$:$E$$\rightarrow$$T$(loc(${\it info}$;$e$),$x$)) \\[0ex]$\times$${\it after}$:($x$:Id$\rightarrow$$e$:$E$$\rightarrow$$T$(loc(${\it info}$;$e$),$x$)) \\[0ex]$\times$(\=$\forall$$e$:$E$.\+ \\[0ex]$\neg$first(${\it pred?}$;$e$) $\Rightarrow$ ($\forall$$x$:Id. ${\it when}$($x$,$e$) $=$ ${\it after}$($x$,pred(${\it pred?}$;$e$)) $\in$ $T$(loc(${\it info}$;$e$),$x$))) \-\\[0ex]$\times$Top \- \end{tabbing}